
CPS352 Lecture - Database Normalization

last revised January 29, 2019
Objectives:

1. To define the concepts “functional dependency” and “multivalued dependency”
2. To show how to find the closure of a set of FD’s and/or MVD’s
3. To define the various normal forms and show why each is valuable
4. To show how to normalize a design
5. To discuss the “universal relation” and “ER diagram” approaches to database design.

Materials:

1. Projectable of new library database scheme used for examples
2. Projectable of lossy join example
3. Projectable of first cut at library FDs
4. Projectable of Armstrong’s Axioms (from 5th ed slides)
5. Projectable of additional rules of FD inference (from 5th ed slide)
6. Projectables of ER to FD Examples on pp. 11-12; ~~~~~``44
7. Projectable of algorithm for computing closure of an attribute (From 5th ed

slides)
8. Projectable of determining canonical cover for library FDs
9. Projectable of 3NF algorithm (From 5th ed slides)
10.Projectable of BCNF algorithm (5th ed slide)
11.Projectable of ER to MVD example
12.Projectable of rules of inference for FD’s and MVD’s (5th ed slide)
13.Projectable of additional MVD Rules (5th ed slide)
14.Projectable of 4NF algorithm (5th ed slide)
15.Projectable of ER diagram for original unnormalized dtabase and relational

scheme resulting from normalizing library database.

I. Introduction

A.We have already looked at some issues arising in connection with the design
of relational databases. We now want to take the intuitive concepts and
expand and formalize them.

�1

B. We will base most of our examples in this series of lectures on a simplified
library database similar to the one we used in our introduction to relational
algebra and SQL lectures, with some modifications

1. We will deal with only book and borrower entities and the checked_out
relationship between them (we will ignore the reserve_book and
employee tables)

2. We will add a couple of attributes to book (which will prove useful in
illustrating some concepts)

a) We will allow for the possibility of having multiple copies of a given
book, so we include a copy_number attribute

b) We will also include a barcode attribute for books. (The barcode is a
unique number - almost like a serial number - assigned to a book when
it is acquired)  
 

PROJECT augmented schema

C. There are two major kinds of problems that can arise when designing a
relational database. We illustrate each with an example.

1. There are problems arising from including TOO MANY attributes in  
one relation scheme.  
 

Example: Suppose a naive user purchases a commercial database  
product and designs a database based on the following scheme.  
Note that it incorporates all of the attributes of the separate tables  
relating to borrowers, books and checkouts from our SQL examples into a  
single table - including the two new ones just added)  
 
Everything(borrower_id, last_name, first_name, // from borrower  

call_number, copy_number,  
barcode, title, author, // from book  
date_due) // from checked_out  

 

(Don’t laugh - people do this!)  

�2

a) Obviously, this scheme is useful in the sense that a desk attendant
could desire to see all of this information at one time.

b) But this makes a poor relation scheme for the conceptual level of
database design. (It might, however, be a desirable view to construct for
the desk attendant at the view level, using joins on conceptual relations.)

c) As we’ve discussed earlier, this scheme exhibits a number of
anomalies. Let’s identify some examples.  
 

ASK CLASS

(1)Update anomalies:  
 

If a borrower has several books out, and the borrower’s name
changes (e.g. through marriage), failure to update all the tuples
creates inconsistencies.

(2)Insertion anomalies:  
 

We cannot store a book in the database that is not checked out to
some borrower. (We could solve this one by storing a null for the
borrower_id, though that’s not a desirable solution.)  
 
We cannot store a new borrower in the database unless the
borrower has a book checked out. (No good solution to this.)

(3)Deletion anomalies  
 

When a book is returned, all record of it disappears from the
database if we simply delete the tuple that shows it checked out to a
certain borrower. (Could solve by storing a null in the borrower_id
instead.)  
 
If a borrower returns the last book he/she has checked out, all
record of the borrower disappears from the database. (No good
solution to this.)  

�3

d) Up until now, we have given intuitive arguments that designing the
database around a single table like this is bad - though not something
that a naive user is incapable of! What we want to do in this series of
lectures is formalize that intuition into a more comprehensive, formal
set of tests we can apply to a proposed database design.

2. Problems of the sort we have discussed can be solved by
DECOMPOSITION: the original scheme is decomposed into two or more
schemes, such that each attribute of the original scheme appears in at least
one of the schemes in the decomposition (and some attributes appear in
more than one).  
 
However, decomposition must be done with care, or a new problem
arises.  
 
Example: Suppose our naive user overhears a couple of CS352 students
talking at lunch and decides that, since decomposition is good, lots of
decomposition is best - and so creates the following set of schemes:  
 
Borrower(borrower_id, last_name, first_name)  
Book(call_number, copy_number, barcode, title, author)  
Checked_out(date_due)

a) This eliminates all of the anomalies we listed above - so it must be
good - right? 
 
ASK CLASS for the problem

b) There is now no way to represent the fact that a certain borrower has a
certain book out - or that a particular date_due pertains to a particular
Borrower/Book combination.

c) This decomposition is an example of what is called a LOSSY-JOIN
decomposition.

�4

(1)To see where this term comes from, suppose we have two
borrowers and two books in our database, each of which is checked
out - i.e, using our original scheme, we would have the following
single table:  
 
20147 1 17 cat charlene AB123.40 Karate elephant 2016-11-15  
89754 1 24 dog donna LM925.04 Cat Cook dog 2016-11-10  
 
PROJECT series of steps  

(2)Now suppose we decompose this along the lines of the proposed
decomposition. We get the following three tables.  
 
20147 cat charlene  
89754 dog donna  
 
AB123.40 1 17 Karate elephant  
LM925.04 1 24 Cat Cook dog  
 
2016-11-15  
2016-11-10

(3)Finally, we attempt to reconstruct our original table, by doing a
natural join of our decomposed tables.  
 

Borrower |X| Book |X| Checked_Out 
 

(Note that, in this case, the natural join is equivalent to cartesian
join because the tables being joined have no attributes in common.)  
 

What do we get?  
 

ASK  
 

8 rows: each consisting of one of the two borrowers, one of the two
books, and one of the two due data

(4)We say that the result is one in which information has been lost. At first,
that sounds strange - it appears that information has actually been gained,
since the new table is 4 times as big as the original, with 6 extraneous
rows. But we call this an information loss because

�5

(a)Any table is a subset of the cartesian join of the domains of its
attributes.

(b)The information in a table can be thought of as the knowledge
that certain rows from the set of potential rows are / are not
present.

(c)When we lose knowledge as to which rows from the cartesian
join are actually present, we have lost information.

(5)We say that a decomposition of a relation scheme R into two or
more schemes R1, R2 ... Rn (where R = R1 U R2 U .. U Rn) is a
lossless-join decomposition if, for every legal instance r of R,
decomposed into instances r1, r2 .. rn of R1, R2 .. Rn, it is always
the case that  
 
r = r1 |x| r2 |x| ... |x| rn  
 
(Note: it will always be the case that r is a SUBSET of  
r1 |x| r2 |x| ... |x| rn. The relationship is lossy if the subset is a
proper one.)

(6)Exercise: can you think of a lossless-join decomposition of
Everything that also eliminates the anomalies?  
 
ASK  
 
If we kept Borrower and Book as above, and made Checked_out be
on the scheme (borrower_id, call_number, date_due), the
decomposition onto Borrower, Book and Checked_Out would be
lossless join, as desired.

3. There is actually another problem that can result from over-doing
decomposition; however, we cannot discuss it until we have introduced
the notion of functional dependencies.

�6

D.First, some notes on terminology that we will use in this lecture:

1. A relation scheme is the set of attributes for some relation - e.g. the
scheme for Borrower is { borrower_id, last_name, first_name}.  
 
We will use upper-case letters, or Greek letters (perhaps followed by a
digit), to denote either complete relation schemes or subsets. Typically,
we will use something like “R” or “R1” to refer to the scheme for an
entire relation, and a letter like “A” or “B” or a or b to refer to a subset.

2. A relation is the actual data stored in some scheme.  
 
We will use lower-case letters (perhaps followed by a digit) to denote
actual relations - e.g. we might use “r” to denote the actual relation whose
scheme is “R”, and “r1” to denote the actual relation whose scheme is
“R1”.

3. A tuple is a single actual row in some relation.  
 
We will also use lower-case letters (perhaps followed by a digit) to denote
individual tuples - often beginning with the letter “t” - e.g. “t1” or “t2”.

�7

II. Functional Dependencies

A.Though we have not said so formally, what was lurking in the background of
our discussion of decompositions was the notion of FUNCTIONAL
DEPENDENCIES. A functional dependency is a property of the
UNDERLYING REALITY which we are modeling, and affects the way we
model it.

1. Definition: for some relation-scheme R, we say that a set of attributes B
(B a subset of R) is functionally dependent on a set of attributes A (A a
subset of R) if, for any legal relation on R, if there are two tuples t1 and
t2 such that t1[A] = t2[A], then it must be that t1[B] = t2[B].  
 

(This can be stated alternately as follows: there can be no two tuples t1
and t2 such that t1[A] = t2[A] but t1[B] <> t2[B].)  

2. We denote such a functional dependency as follows:  
 

A → B (Read: A determines B)  
 

Example: We assume that a borrower_id uniquely determines a borrower
(that’s the whole reason for having it), and that any given borrower has
exactly one last name and one first name. Thus, we have the functional
dependency:  
 

borrower_id → last_name, first_name  
 

 [Note: this does not necessarily have to hold. We could conceive of a
design where, for example, a borrower_id could be assigned to a family,
with several individuals able to use it However, in the scheme we are
developing, we will assume that the FD above does hold.]

3. Let’s list some functional dependencies for the reality underlying a
simplified library database scheme, which includes the attributes listed
below, organized into tables in some appropriate way.  
 

Reminder: we’ve added two attributes to the list used in previous
examples. These will be important to allow us to illustrate some
concepts.  

�8

 
borrower_id  
last_name 
first_name 
call_number  
copy_number  
barcode 
title 
author  
date_due 
 
WRITE ON BOARD AND ASK FOR FD’S - PROJECT 
 
borrower_id → last_name, first_name 
call_number → title 
call_number, copy_number → barcode 
call_number, copy_number → borrower_id, date_due *  
* If a certain book is not checked out, then, of course, it has no
borrower_id or date_due (they are null)  
barcode → call_number, copy_number  
 
(Note: these FD’s imply a lot of other FD’s - we’ll talk about this shortly)  

4. What about the following - should it be a dependency?  
 
call_number → author  
 
ASK

a) Obviously, this is not true in general - books can have multiple
authors.

b) At the same time, it is certainly not the case that there is NO
relationship between call_number and author.

�9

c) The relationship that exists is one that we will introduce later, called a
multi-valued dependency.

d) For now, we will make the simplifying assumption that each book has
a single, principal author which is the only one listed in the database.
Thus, we will assume that, for now:  
 
call_number → author  
 
holds. (Later, we will drop this assumption and this FD)

B. The first step in using functional dependencies to design a database is to
LIST the functional dependencies that must be satisfied by any instance of
the database.

1. We begin by looking at the reality being modeled, and make explicit the
dependencies that are present in it. This is not always trivial.

a) Example: earlier, we considered the question about whether we should
include 
 
call_number → author  
 
in our set of dependencies

b) Example: Should we include the dependency  
 
last_name, first_name → borrower_id  
 
in our set of dependencies used for our design?  
 
The answer depends on some assumptions about peoples' names, and
on whether we intend to store a full name (last, first, mi, plus suffixes
such as Sr, Jr, III etc.) For our examples, we will not include this
dependency.

�10

2. Note that there is a correspondence between FD’s and symbols in an ER
diagram - so if we start with an ER diagram, we can list the dependencies
in it.  
 
PROJECT examples as they are done

a) What does the following pattern in an ER diagram translate into in
terms of FD’s? (Note that A is underlined)  
 

�  
 
ASK  
 
A → BC

b) How about this? 
 

�  
 
ASK  
 
A → BCMWXY  
W → XY

A B C

A B C W X YM

�11

c) How about this? 
 

�  
ASK  
 
A → BCMWXY  
W → XYMABC

d) Or this? 
 

�  
ASK  
 
A → BC 
W → XY  
AW → M

e) Thus, the same kind of thinking that goes into deciding on keys and
one-to-one, one-to-many, or many-to-many relationships in ER
diagrams goes into identifying dependencies in relational schemes.

C. We then generate from this initial listing of dependencies the set of functional
dependencies that they IMPLY.

A B C W X YM

A B C W X YM

�12

1. Example: given the dependencies  
 
call_number, copy_number → borrower_id  
borrower_id → last_name, first_name

a) The following dependency also must hold  
 
call_number, copy_number → last_name, first_name  
 
(The call number of a (checked out) book determines the name of the
borrower who has it)

b) We can show this from the definition of functional dependencies by
using proof by contradiction, as follows:  
 
We want to show that, given any two legal tuples t1 and t2 such that
t1[call_number, copy_number] = t2[call_number, copy_number], it
must be the case that t1[last_name, first_name] = t2[last_name,
first_name].

(1)Suppose there are two tuples t1 and t2 such that this does not hold -
e.g.  
 
t1[call_number, copy_number] = t2[call_number, copy_number]
and t1[last_name, first_name] ≠ t2[last_name, first_name]

(2)Now consider the borrower_id values of t1 and t2.  
 
If it is the case that  
 
t1[borrower_id] ≠ t2[borrower_id]  
 
then the FD call_number, copy_number → borrower_id is not
satisfied 

�13

 
But if it is the case that  
 

t1[borrower_id] = t2[borrower_id]  
 

then the FD borrower_id → last_name, first_name is violated.

(3)Either way, if t1 and t2 violate  
 

call_number, copy_number → last_name, first_name  
 

then they also violate one or the other of the given dependencies.  
 

QED

2. Formally, if F is the set of functional dependencies we develop from the
logic of the underlying reality, then F+ (the transitive closure of F) is the
set consisting of all the dependencies of F, plus all the dependencies they
imply.  
 
To compute F+, we can use certain rules of inference for dependencies

a) A minimal set of such rules of inference is a set known as Armstrong's
axioms [Armstrong, 1974]. These are listed in the text on page 339  
 
PROJECT 5th ed slide

(1)Example of reflexivity:  
 

last_name, first_name → last_name  
 

Note: this is the only rule that lets us “start with nothing” and still
create FD’s. Dependencies created using this rule are called “trivial
dependencies” because they always hold, regardless of the
underlying reality.  
 
Definition: Any dependency of the form 𝛂 → b, where 𝛂 ⊇ 𝛃 is
called trivial.

�14

(2)Example of augmentation:  
 
Given: 
 
borrower_id → last_name, first_name  
 
It follows that 
 
borrower_id, call_number → last_name, first_name, call_number

(3)Example of transitivity: the above proof that  
 
call_number, copy_number → last_name, first_name

b) Note that this is a minimal set (a desirable property of a set of
mathematical axioms.) However, the task is made easier by using
certain additional rules of inference that follow from Armstrong's
axioms. These are also listed on page 339.  
 
PROJECT 5th ed slide

(1)Example of Union rule:  
 

Since call_number → title 
 

and  
 

call_number → author  
 

it follows that 
 

call_number → title, author

(2)Example of the Decomposition rule:  
 

Since borrower_id → last_name, first_name,  
 

it follows that 
 

�15

borrower_id → last_name  
 

and  
 

borrower_id → first_name

(3)Example of the Pseudo-transitivity rule: (Note: to illustrate this
concept we will have to make some changes to our assumptions,
just for the sake of this one illustration)  
 
Suppose we require book titles to be unique - i.e. we require  
 

title → call_number (but not, of course, title → copy_number!)  
 

Then, given  
 

call_number, copy_number → barcode, borrower_id, date_due  
 

by pseudo-transitivity, we would get  
 

title, copy_number → barcode, borrower_id, date_due

c) Each of these additional rules can be proved from the ones in the basic
set of Armstrong’s axioms - e.g.

(1)Proof of the union rule 
 
Given: 𝛂 → 𝛃, 𝛂 → 𝝲  
 
Prove: 𝛂 → 𝛃𝝲  
 
Proof: 𝛂𝛂 → 𝛂𝛃 (augmentation of first given with 𝛂)  

𝛂 → 𝛂𝛃 (since we are working with sets, 𝛂𝛂 = 𝛂)  
𝛂𝛃 → 𝛃𝝲 (augmentation of second given with 𝛃)  
𝛂 → 𝛃𝝲 (transitivity)

 
 

�16

(2)Proof of the decomposition rule:  
 

Given: 𝛂 → 𝛃𝝲  
 

Prove: 𝛂 → 𝛃 and 𝛂 → 𝝲  
 

Proof: 𝛃𝝲 → 𝛃 and 𝛃𝝲 → 𝝲 (by reflexivity)  
 𝛂 → 𝛃 and 𝛂 → 𝝲 (by transitivity using given)

(3)Proof of the psuedo-transitivity rule:  
 
Given: 𝛂 → 𝛃 and 𝛃𝝲 → 𝝳 
 

Prove: 𝛂𝝲 → 𝝳 
 

Proof: 𝛂𝝲 → 𝛃𝝲 (augmentation of first given with 𝝲)  
 𝛂𝝲 → 𝝳 (transitive rule using second given)  

d) Note that the union and decomposition rules, together, give us some
choices as to how we choose to write a set of FD's.  
 

For example, given the FD's  
 

𝛂 → 𝛃𝝲 and 𝛂 → 𝝳𝝴 
 
We could choose to write them as  
 

𝛂 → 𝛃 
𝛂 → 𝝲  
𝛂 → 𝝳 
𝛂 → 𝝴  
 

or as  
 

𝛂 → 𝛃𝝲𝝳𝝴  
 

(or any one of a number of other ways)  
 

Because the latter form requires a lot less writing, we used it when
listing our initial set of library dependencies, and we will use it in
many of the examples which follow.

�17

e) In practice, F+ can be computed algorithmically. An algorithm is given
in the text for determining F+ given F:  
 

PROJECT - 5th ed slide

f) Note that, using an algorithm like this, we end up with a rather large
set of FD’s. (Just the reflexivity rule alone generates lots of FD’s.)  
 

For this reason, it is often more useful to consider finding the closure
of a given attribute, or set of attributes. (If we apply this process to all
attributes appearing on the left-hand side of an FD, we end up with all
the interesting FD’s)

(1)The text gives an algorithm for this:  
 

PROJECT - 5th ed slide

(2)Example of applying the algorithm to left hand sides of each of the
FD’s for our library: 
 

Starting set (F): 
 

borrower_id → last_name, first_name 
call_number → title 
call_number, copy_number → barcode, borrower_id, date_due  
barcode → call_number, copy_number  
call_number → author

(a)Compute borrower_id +: 
 

Initial: { borrower_id }  
 

On first iteration through loop, add  
 

last_name 
first_name 

 

Additional iterations don’t add anything  
 

∴ borrower_id → borrower_id, last_name, first_name

�18

(b)Compute call_number +  
 

Initial: { call_number }  
 

On first iteration through loop, add  
 

title 
author  

 
Additional iterations don’t add anything  
 

∴ call_number → call_number, title, author

(c)Compute call_number, copy_number +  
 

Initial: { call_number, copy_number }  
 

On first iteration through loop, add  
 

title 
barcode 
borrower_id  
date_due 
author  

 

On second iteration through loop, add  
 

last_name 
first_name 

 

∴ call_number, copy_number → call_number,  
 copy_number, title, barcode, borrower_id,  
 date_due, author, last_name, first_name

�19

(d)Compute barcode +:  
 

Initial: { barcode }  
 

On first iteration thorough loop, add  

call_number  
copy_number  

 

On second iteration through loop, add  
title 
borrower_id  
date_due 
author  

 

On third iteration through loop, add  

last_name 
first_name 

 

∴ barcode → barcode, call_number,  
copy_number, title, borrower_id, date_due, author,  
last_name, first_name

(3)Note that generating the closure of an attribute / set of attributes
provides an easy way to test if a given set of attributes is a
superkey: does/do the attribute(s) in the set determine every
attribute in the scheme?

(a)Both { call_number, copy_number } and { barcode } would
qualify as superkeys for our entire scheme (if it were
represented as a single table) - and therefore for any smaller
table in which they occur.

(b){ borrower_id } is a superkey for any scheme consisting of just
attributes from { borrower_id, last_name, first_name }

(c)If we had a scheme for which no set of attributes appearing on
the left hand side of an initial dependency were a superkey, we
could find a superkey by combining sets of attributes to get a set
that determines everything.  

�20

3. Given that we can infer additional dependencies from a set of FD's, we might
ask if there is some way to define a minimal set of FD's for a given reality.

a) We say that a set of FD's Fc is a CANONICAL COVER for some set
of dependencies F if:

(1)Fc implies F and F implies Fc - i.e. they are equivalent.

(2)No dependency in Fc contains any extraneous attributes on either
side (see the book for definition of “extraneous”, which is a non-
trivial concept!)

(3)No two dependencies have the same left side (i.e. the right sides of
dependencies with the same left side are combined)

b) It turns out to be easier - I think - to find a canonical cover by first writing F
as a set of dependencies where each has a single attribute on its right hand
side - then eliminate redundant dependencies (dependencies implied by other
dependencies) - then combine dependencies with the same left-hand side.  
 

Example: Find a canonical cover for the dependencies in our library
database:  
 

PROJECT steps

(1)Start with the following closure of the various attributes we found
earlier:  
 

borrower_id → borrower_id, last_name, first_name  
call_number → call_number, title, author  
call_number, copy_number → call_number copy_number,  

title, barcode, borrower_id, date_due, author,  
last_name, first_name  

barcode → barcode, call_number,  
copy_number, title, borrower_id, date_due, author,  
last_name, first_name

�21

(2)Rewrite with a single attribute on the right hand side of each  
 
borrower_id → borrower_id  
borrower_id → last_name 
borrower_id → first_name 
call_number → call_number  
call_number → title 
call_number → author  
call_number, copy_number → call_number  
call_number, copy_number → copy_number  
call_number, copy_number → title 
call_number, copy_number → barcode 
call_number, copy_number → borrower_id  
call_number, copy_number → date_due 
call_number, copy_number → author  
call_number, copy_number → last_name  
call_number, copy_number → first_name 
barcode → barcode 
barcode → call_number  
barcode → copy_number  
barcode → title 
barcode → borrower_id  
barcode → date_due 
barcode → author  
barcode → last_name 
barcode → first_name

(3)Now eliminate the trivial dependencies  
 

(Cross out on list)

(4)There are dependencies in this list which are implied by other
dependencies in the list, and so should be eliminated. Which ones?  
 

ASK  
 

�22

• call_number, copy_number → title 
 call_number, copy_number → author  
 

(Since the same RHS appears with only call_number on the LHS)  
 

• barcode → title 
 barcode → author  
 

(These are implied by the transitive rule given that  
barcode → call_number and call_number determines these).  
 

• call_number, copy_number → last_name  
 call_number, copy_number → first_name 
 

(These are implied by the transitive rule given that call_number,
copy_number → borrower_id and borrower_id determines these)  
 

• barcode → last_name 
 barcode → first_name 
 

(These are implied by the transitive rule given that  
barcode → borrower_id and borrower_id determines these)  
 

• Either one of the following - but not both!  
 

 call_number, copy_number → borrower_id  
 call_number, copy_number → date_due 
 

or  
 

 barcode → borrower_id  
 barcode → date_due 
 

(Either set is implied by the transitive rule from the other set given
barcode → call_number, copy_number or call_number,
copy_number → barcode.)  
 

(Assume we keep the ones with call_number, copy_number on the
LHS)

(5)Result after eliminating redundant dependencies:  
 

�23

borrower_id → last_name 
borrower_id → first_name 
 

call_number → title 
call_number → author  
 

call_number, copy_number → barcode 
call_number, copy_number → borrower_id  
call_number, copy_number → date_due 
 

barcode → call_number  
barcode → copy_number

(6)Rewrite in canonical form by combining dependencies with the
same left-hand side:  
 

borrower_id → last_name, first_name  
call_number → title, author  
 

call_number, copy_number → barcode,borrower_id, date_due  
barcode → call_number, copy_number

c) Unfortunately, for any given set of FD’s, the canonical cover is not
necessarily unique - there may be more than one set of FD’s that
satisfies the requirement.  
 

Example: For the above, we could have kept  
barcode → borrower_id, date_due  

and dropped  
call_number, copy_number → borrower_id, date_due.

�24

D.Functional dependencies are used in two ways in database design

1. They are used as a guide to DECOMPOSING relations. For example, the
problem with our original, single-relation scheme was that there were too
many functional dependencies within one relation.

a) last_name and first_name depend only on borrower_id

b) title and author depend only on call_number

c) if a book is checked out, then borrower_id and date_due depend on
call_number, copy_number

d) We run into a problem when all of these FD’s appear in a single table -
we will formalize this soon.)

2. They are used as a means of TESTING decompositions.

a) We can use the closure of a set of FD's to test a decomposition to be
sure it are lossless join.  
 

If we decompose a scheme R with set of dependencies F into two
schemes R1 and R2, the resultant decomposition is lossless join iff  
 

(R1 ∩ R2) → R1 is in F+ 
 

or  
 

R1 ∩ R2 → R2 is in F+ 
 

(or both)

b) We also want to produce DEPENDENCY-PRESERVING
decompositions wherever possible.

(1)A dependency-preserving decomposition allows us to test a new
tuple being inserted into some table to see if it satisfies all relevant
functional dependencies without doing a join.  
 

�25

Example: If our decomposition includes a scheme including the
following attributes:  
 

call_number, copy_number, barcode ...  
 

then when we are inserting a new tuple we can easily test to see
whether or not it violates the following dependencies  
 

barcode → call_number, copy_number  
call_number, copy_number → barcode 
 

Now suppose we decomposed this scheme in such a way that no
table contains all three of these attributes - i.e. into something like:  
 

call_number, barcode  
and  

copy_number, barcode ...  
 

When inserting a new book entity (now as two tuples in two
tables), we can still test  
 

barcode → call_number, copy_number  
 

by testing each part of the right hand side separately for each table -
but the only way we can test whether  
 

call_number, copy_number → barcode 
 

is satisfied by a new entity is by joining the two tables to make sure
that the same call_number and copy_number don’t appear with a
different barcode

(2)To test whether a decomposition is dependency-preserving, we
introduce the notion of the restriction of a set of dependencies to
some scheme. Basically, the restriction of a set of dependencies to
some scheme is the subset which have the property that all of the
attributes of the dependency are contained in the scheme  
 

Ex: The restriction of { A → B, A →C, A → D to (ABD) is  
{ A →B, A →D }

�26

(3)A decomposition is dependency preserving if the transitive closure
of the original set is equal to the transitive closure of the set of
restrictions to each scheme.  
 

Example: if we have a scheme (ABCD) with dependencies  
 

A → B 
B → CD

(a)The decomposition into  
 

(AB) (BCD) 
 

is both lossless-join and dependency preserving.

(b)So is the following decomposition  
 

(AB) (BC) (BD) 
 

because 
 

B → C and B → D together imply B → CD

(c)However, the following decomposition, while lossless join, is
not dependency-preserving  
 

(AB) (ACD)

i) The transitive closure of the original set of dependencies
includes A → (all combinations of A,B,C,D) and  
B → (all combinations of B, C, D)

ii) The restriction of this to the decomposed schemes is A →
(all combinations of AB) and  
A → (all combinations of A,C,D)

iii)Since B → CD is not a member of the transitive closure of
these restrictions, it cannot be tested without doing a join  
 
 
 

�27

Example: suppose we have the tuple a1 b1 c1 d1 in the table,
and try to insert a2 b1 c2 d2.  
 
This violates B → CD. However, we cannot discover this
fact unless we join the two tables, since B does not appear in
the same table with C or D

(4)Again, suppose we have the scheme (ABCD) with dependencies  
 

A → B 
A → C 
B → CD  
 

If we decompose into  
 

(AB) (BCD) 
 

The decomposition is lossless join and dependency-preserving,
even though we can’t test A → C directly without doing a join,
because A → C is implied by the dependencies A → B and B → C
which we can test - it is therefore in the transitive closure of the
restriction of the original set of dependencies to the decomposed
scheme.

E. Note that the notions of superkey, candidate key, and primary key we
developed earlier can now be stated in terms of functional dependencies.

1. Given a relation scheme R, a set of attributes K (K subset R) is a
SUPERKEY iff K → R. (And therefore by the decomposition rule each
individual attribute in R.)

2. A key K is a CANDIDATE key iff there is no proper subset of K that is a
superkey.

a) A superkey consisting of a single attribute is always a candidate key.

�28

b) If K is composite, then for K to be a candidate key it must be the case
that for each proper subset of K there is some attribute in R that is
NOT functionally dependent on that subset, though it is on K.

3. The PRIMARY KEY of a relation scheme is the candidate key chosen
for that purpose by the designer.

4. Since a relation is a set, it must have a superkey (possibly the entire set of
attributes.) Therefore, it must have one or more candidate keys, and a
primary key can be chosen. We assume, in all further discussions of
design, that each relation scheme we work with has a primary key.  
 
Note: In our discussion of the ER model, we introduced the notion of a
weak entity as an entity that has no superkey. However, the process by
which we convert to tables guarantees that the corresponding table will
have a superkey, since we include in the table the primary key(s) of the
entity/entities on which the weak entity depends.

5. In the discussions that follow, we will say that an attribute is a KEY
ATTRIBUTE if it is a candidate key or part of a candidate key. (Not
necessarily the primary key.) Some writers call a key attribute a PRIME
ATTRIBUTE.  

�29

III.Using Functional Dependencies to Design Database Schemes

A.Three major goals:

1. Avoid redundancies and the resulting update, insertion, and deletion
anomalies, by decomposing schemes as necessary.

2. Ensure that all decompositions are lossless-join.

3. Ensure that all decompositions are dependency-preserving.

4. However, all three may not be achievable at the same time in all cases, in
which case some compromise is needed. One thing we never
compromise, however is lossless-join, since that involves the destruction
of information. We may have to accept some redundancy to preserve
dependencies, or we may have to give up dependency-preservation in
order to eliminate all redundancies. (We’ll see an example of this later.)

B. To ensure the first goal, database theorists have developed a hierarchy of
NORMAL FORMS, plus a set of decomposition rules that can be used to
convert a database not in a given normal form into one that is. (The
decomposition rules ensure the lossless-join property, but not necessarily the
dependency-preserving property.)

1. We will consider the normal forms as they were developed historically.\

2. We will use the library database and set of FD’s we just developed, and
will progressively normalize it to 4NF.

3. Of coures, it is most common, in practice, to go straight to the highest
normal form desired, rather than working through the hierarchy of forms.
We present the forms in this order only for pedagogical reasons.

�30

C. First Normal Form (1NF):

1. A relation scheme R is in 1NF iff, for each tuple t in R, each attribute of t
is atomic - i.e. it has a SINGLE, NON-COMPOSITE VALUE

2. This rules out:

a) Repeating groups.

b) Composite fields in which we can access individual components e.g.
dates that can be either treated as unit or can have month, day and
year components accessed separately.

3. This is our motivation, at the present time, for requiring  
 

call_number → author  
 

- i.e. requiring that each book have a single author  
 

(If we didn’t want to require that, we could still produce a 1NF scheme by
“flattening” our scheme. This would result, for example, in having three
book tuples for our course text - one each for Korth, Silberschatz, and
Sudarshan.)

4. 1NF is desirable for most applications, because it guarantees that each attribute
in R is functionally dependent on the primary key, and simplifies queries.  
 

However, there are some applications for which atomicity may be undesirable -
e.g. keyword fields in bibliographic databases. There are some who have
argued for not requiring normalization in such cases, though the pure relational
model certainly does.

D.Second Normal Form (2NF):

1. A 1NF relation scheme R is in 2NF iff each non-key attribute of R is
FULLY functionally dependent on each candidate key. By FULLY
functionally dependent, we mean that it is functionally dependent on the
whole candidate key, but not on any proper subset of it.  

�31

 

NOTE: We only require attributes not part of a candidate key to be fully
functionally dependent on each candidate key. An attribute that IS part
of a candidate key CAN be dependent on just part of some other
candidate key. We address this situation in conjunction with BCNF.)

2. Example: Suppose we had the following single scheme, which
incorporates all of our attributes into a single table.  
 

Everything(borrower_id, last_name, first_name,  
call_number, copy_number, barcode, title,  
author, date_due)

a) What would our candidate keys be?  
 

ASK  
 

From the FD analysis we just did, we see that the candidate keys are
(call_number, copy_number) and (barcode).

b) One of our candidate keys is composite. Do we then have any
attributes that depend only on call_number or only on copy_number?  
 

ASK  
 

Yes - title and author.

c) The result of this is that we cannot record the fact that QA76.9.D3
S5637 is the call number for “Database System Concepts ” unless we
actually own a copy of the book. (Maybe this is a problem, maybe
not.) Moreover, if we do own a copy and it is lost, and we delete it
from the database, then we have to re-enter this information when we
get a new copy.

d) Any non-2NF scheme can be made 2NF by a decomposition in which we
factor out the attributes that are dependent on only a portion of a
candidate key, together with the portion they depend on.  
 

For example, in this case we would factor as follows  
 

�32

Book_info(call_number, title, author)  
 

and  
 

Everything_else(borrower_id, last_name, first_name,  
call_number, copy_number, barcode, date_due)  

 

This is now 2NF.

e) Observe that any 1NF relation scheme which does NOT have a
COMPOSITE primary key is, of necessity, in 2NF.

f) 2NF is desirable because it avoids repetition of information that is
dependent on part of the primary key, but not the whole key, and thus
prevents various anomalies.

E. Third Normal Form (3NF):

1. A 2NF relation scheme R is in 3NF iff no non-key attribute of R is
transitively-dependent (in a nontrivial way) on a candidate key through
some other non-key attribute(s).  
 

NOTE: We only forbid attributes not part of a candidate key to be
transitively dependent on the primary key. An attribute that IS part of a
candidate key CAN be transitively dependent on the primary key. (We
address this situation in conjunction with BCNF.

2. Example: Consider the Everything_else scheme we just derived, with
candidate keys call_number, copy_number and barcode. While this is
2NF, is is not 3NF, since certain attributes are dependent on borrower_id,
which is in turn dependent on the candidate key call_number,
copy_number. That is, we have:  
 

call_number, copy_number → borrower_id  
 

borrower_id → last_name 
borrower_id → first_name 
 

which are a transitive dependencies on the candidate key. This leads to
anomalies like:

�33

a) We cannot record information about a borrower who does not have a
book checked out.

b) If a a borrower who has several books checked out changes his/her
name, we must update several tuples.

c) If a borrower has only one book checked out and returns it, all
information about the borrower’s name is also deleted.

3. Informally, any non-3NF scheme can be decomposed into 3NF schemes
by factoring out the attributes that are transitively-dependent on some
non-key attribute, and putting them into a new scheme along with the
attribute(s) they depend on.  
 

Example: We can decompose Everything_else into  
 

Borrower(borrower_id, last_name, first_name)  
 

Everything_left(borrower_id, call_number, copy_number,  
barcode, date_due)  

 

which are now 3NF

4. Any non-3NF relation can be decomposed in a lossless-join, dependency
preserving way. An informal approach like the one we just used will
often work, but there is also a formal algorithm that can be used  
 

PROJECT: 5th ed slide 
 

Note that this is actually a construction algorithm, not a decomposition
algorithm - i.e. we start with nothing and construct a set of schemes,
instead of starting with a scheme and decomposing it.  
 

Example: construct a 3NF scheme for our library database

a) Start with our canonical cover:  
 

borrower_id → last_name, first_name  
call_number → title, author  

�34

 

call_number, copy_number → barcode, borrower_id, date_due  
barcode → call_number, copy_number

b) Each of the first three dependencies leads to adding a schema.  
 

(borrower_id, last_name, first_name)  
(call_number, title, author)  
(call_number, copy_number, barcode, borrower_id, date_due)

c) The fourth dependency does not lead to adding a schema, since all of
its attributes occur together in the third scheme.

d) The set of schemas includes a candidate key for the whole relation - so
we are done.

F. Boyce-Codd Normal Form (BCNF)

1. The first three normal forms were developed in a context in which it was
tacitly assumed that each relation scheme would have a single candidate
key. Later consideration of schemes in which there were multiple
candidate keys led to the realization that 3NF was not a strong enough
criterion, and led to the proposal of a new definition for 3NF. To avoid
confusion with the old definition, this new definition has come to be
known as Boyce-Codd Normal Form or BCNF.

2. BCNF is a strictly stronger requirement than 3NF. That is, every BCNF
relation scheme is also 3NF (though the reverse may not be true.) It also
has a cleaner, simpler definition than 3NF, since no reference is made to
other normal forms (except for an implicit requirement of 1NF, since a
BCNF relation is a normalized relation and a normalized relation is
1NF). Thus, for most applications, attention will be focused on finding a
design that satisfies BCNF, and the previous definitions of 1NF, 2NF, and
3NF will not be needed. There will, however, be times when BCNF is
not possible without sacrificing dependency-preservation; in these cases,
we may use 3NF as a a compromise.

�35

3. Definition of BCNF: A normalized relation R is in BCNF iff every
nontrivial functional dependency that must be satisfied by R is of the
form A → B, where A is a superkey for R.

4. We have noted that BCNF is basically a strengthening of 3NF. Often a
relation that is in 3NF will also be in BCNF. But BCNF becomes of
interest when a scheme contains two overlapping, composite candidate
keys.

a) Example: Consider the 3NF decompositions we generated earlier for
our library example. It is also BCNF.

b) Example: Suppose we remove the assumption that each book has a
single author, and allow books to have multiple authors.

(1)In this case, of course, we must drop the following FD:  
 
call_number → author

(2)Suppose we now generate the following schema (along with
others): 
 
(call_number, copy_number, barcode, author)  
 
with FD’s  
 
call_number, copy_number → barcode 
barcode → call_number, copy_number  
 
What are the candidate keys for this schema?  
 
ASK  
 
(call_number, copy_number, author)  
(barcode, author)

�36

(3)Is it 3NF? 
 
ASK  
 
At first glance, it would appear not to be - because both of our FD’s
involve left-hand-sides that are not candidate keys. However, the
3NF definition includes a “loophole” - a key attribute can be
transitively dependent on another attribute. Since call_number,
copy_number, and barcode are all part of one or the other of the
candidate keys, the 3NF rules allow these dependencies.

(4)However, though the scheme is 3NF, it does involve an undesirable
repetition of data - e.g. given that QA76.9.D3 S5637 is the call
number for our text, if copy #1 of it has accession number 123456,
then we must record this information three times - once for each of
the three authors of the text.

(5)Of course, this scheme is not BCNF - the BCNF definition does not
have the “loophole” and would force us to decompose further into
something like:  
 

(call_number, copy_number, barcode)  
(call_number, copy_number, author)

(6)The advantage of BCNF here is that it avoids a redundancy that
3NF would allow; the repetition of the barcode for each occurrence
of a given call_number, copy_number (which could occur many
times paired with different authors).

5. Unfortunately, while it is always possible to decompose a non-3NF
scheme into a set of 3NF schemes in a lossless, dependency-preserving
way, it is not always possible to decompose a non-BCNF scheme into a
set of BCNF schemes in a way that preserves dependencies. (A lossless
decomposition is always possible, of course.)

�37

a) Example: The previous example we used DOES allow a dependency
preserving decomposition into BCNF - e.g. the BCNF decomposition
above does preserve the FD’s.

b) Example: The following non-BCNF scheme cannot be decomposed
into BCNF in a way that preserves dependencies:  
 

S(J,K,L)  
 

with dependencies  
 

JK → L 
L → K  
 

This is not BCNF, since the candidate keys are JK and JL, but K
depends only on L. (L is therefore a determinant, but not a candidate
key.) There are three possible decompositions into two schemes of
two attributes each of which only one is lossless-join:  
 

(J,L) and (K,L)  
 

This does not allow the dependency to JK → L to be tested without a
join.  
 

(Fortunately, such messy situations are rare; usually a dependency-
preserving BCNF decomposition is possible.)

6. The book gives an Algorithm for decomposing any non-BCNF scheme
into a set of BCNF schemes.  
 

PROJECT - 5th ed slide 
 

Let's apply it to our “multiple authors per book” example:  
 

result initially = { (call_number, copy_number,  
 barcode, author) }  

 
 
 
 

F+ = F =  
 

call_number, copy_number → barcode 
barcode → call_number, copy_number  
 

�38

(i.e. in this case taking the transitive closure of F adds no new
dependencies of interest.)  
 

candidate keys are (call_number, copy_number, author) and  
(barcode, author)  
 

At the first iteration of the while, we find that the one scheme found in
result is non-BCNF. We look at our dependencies and find that the first is
of the form 𝛂 → 𝛃, where 𝛂 is call_number, copy_number and 𝛃 is
barcode, but call_number, copy_number is not a key for this scheme- so
we replace the scheme in result by:  
 

R - 𝛃 = (call_number, copy_number, author)  
plus 𝛂 ∪ 𝛃 = (call_number, copy_number, barcode)  
 

At the second iteration of the while, we find that both schemes in result
are BCNF, so we stop - which is the same as the BCNF scheme we
introduced earlier.

G.We said earlier that we had three goals we wanted to achieve in design:

1. ASK

a) Avoid redundancies and resulting update, insertion, and deletion
anomalies, by decomposing schemes as necessary.

b) Ensure that all decompositions are lossless-join.

c) Ensure that all decompositions are dependency-preserving.

2. We have seen how to use FD's to help accomplish the first goal, and how
to use FD’s to test whether the second is satisfied. Obviously, the set of
FD’s is what we want to preserve, though this is not always attainable if
we want to go to the highest normal form.  

�39

IV.Normalization Using Multivalued Dependencies

A.So far, we have based our discussion of good database design on functional
dependencies. Functional dependencies are a particular kind of constraint
imposed on our data by the reality we are modeling. However, there are
certain important real-world constraints that cannot be expressed by
functional dependencies.

1. Example: We have thus far avoided fully dealing with the problem of the
relationship between a book and its author(s).

2. Initially, we developed our designs as if the following dependency held:  
 

call_number → author

3. Although we dropped that dependency, we don’t want to say that there is
no relationship between call_number and author - e.g. we would expect to
see QA76.9.D3 S5637 (the call_number for our text book) in the database
associated with Korth, Silberschatz, or Sudarshan, but we would not expect
to see it associated with Peterson (who happens to be a joint author with
Silberschatz on another text book we have used, but not this one!).

B. At this point, we introduce a new kind of dependency called a
MULTIVALUED DEPENDENCY. We will define this two ways - first more
intuitively, then more rigorously.

1. We say that a set of attributes A MULTI-DETERMINES a set of
attributes B iff, in any relation including attributes A and B, for any given
value of A there is a (non-empty) set of values for B such that we expect
to see all of those B values (and no others) associated with the given A
value and any given set of values for the remaining attributes. (The
number of B values associated with a given A value may vary from A
value to A value.)

2. We say that a set of attributes A MULTI-DETERMINES a set of attributes
B iff, for any pair of tuples t1 and t2 on a scheme R including A and B such
that t1[A] = t2[A], there must exist tuples t3 and t4 such that  

�40

 
t1[A] = t2[A] = t3[A] = t4[A] and  
t3[B] = t1[B] and t4[B] = t2[B] and  
t3[R-A-B] = t2[R-A-B] and t4[R-A-B] = t1[R-A-B]  
 

Note: if t1[B] = t2[B], then this requirement is satisfied by letting t3 = t2
and t4 = t1. Likewise, if t1[R-A-B] = t2[R-A-B], then the requirement is
satisfied by setting t3 = t1 and t4 = t2. Thus, this definition is only
interesting when t1[B] <> t2[B] and t1[R-A-B] <> t2[R-A-B].

3. We denote the fact that A multidetermines B by the following notation:  
 

A ->> B 
 

(Note the similarity to the notation for functional dependence.)

4. Example: Consider the following "all-key" scheme:  
 

Author_info(call_number, copy_number, author)

a) This scheme is BCNF

b) It actually contains the following MVD:  
 

call_number ->> author  
 

(That is, every copy of a book with a given call number has the exact
same authors - something which is always true, even with revised
editions with different authors since such a revised edition would have
a different call number)

c) Thus once we know that the author values associated with QA76.9.D3
S5637 (the call number for our textbook) are Korth, Silberschatz, and
Sudarshan, the multivalued dependency from call_number to author
tells us two things:

(1)Whenever we see a tuple with call_number attribute
QA76.9.D3 S5637, we expect that the value of the author attribute

�41

will be either Korth or Silberschatz or Sudarshan - but never some
other name such as Peterson.

(2)Further, if a tuple containing QA76.9.D3 S5637 and Korth (along
with some copy number) appears in the database, then we also
expect to see another tuple that is exactly the same except that it
contains Silberschatz as its author value, and another tuple that is
exactly the same except it contains Sudarshan as its author.

(3)As an illustration of this latter point, consider the following instance:  
 
QA76.9.D3 S5637 1 Silberschatz 
QA76.9.D3 S5637 1 Korth 
QA76.9.D3 S5637 1 Sudarshan 
QA76.9.D3 S5637 2 Silberschatz 
QA76.9.D3 S5637 2 Sudarshan 
 
The multi-valued dependency call_number ->> author requires that we
must add to the relation instance the tuple  
 

QA76.9.D3 S5637 2 Korth 
 

This can be shown from the rigorous definition as follows:  
 

Let t1 be the tuple:  
 

QA76.9.D3 S5637 2 Silberschatz 
 

t2 be the tuple:  
 

QA76.9.D3 S5637 1 Korth  
 

since these tuples agree on the call_number value, our definition
requires the existence of t3 and t4 tuples such that  
 

• t1, t2, t3 and t4 all agree on call_number QA76.9.D3 S5637  
• t3 agrees with t1 in having author Silberschatz, and t4 agrees with t2
in having author Korth  
• t3 agrees with t2 on everything else - i.e. copy_number 1, and t4
agrees with t1 on everything else - i.e. copy_number 2  
 

�42

Thus t3 is  
 

QA76.9.D3 S5637 1 Silberschatz 
 

And t4 is  
 

QA76.9.D3 S5637 2 Korth 
 

While the former occurs in the database, the latter does not, and so
must be added.

(4)On the other hand, suppose our database contains just one copy -
i.e.  
 

QA76.9.D3 S5637 1 Silberschatz 
QA76.9.D3 S5637 1 Korth 
QA76.9.D3 S5637 1 Sudarshan 
 

This satisfies the multivalued dependency call_number ->> author
as it stands.  
 

To see this, let t1 be the first tuple and t2 the second. Since they
agree on call_number but differ on author, we require the presence
of tuples t3 and t4 which have the same call_number, and with  
 

t3 agreeing with t1 on author (Silberschatz)  
t4 agreeing with t2 on author (Korth)  
t3 agreeing with t2 on everything else (copy_number = 1)  
t4 agreeing with t1 on everything else (copy_number = 1)  
 

Of course, now t3 and t4 are already in the database (indeed, t3 is
just t1 and t2 is just t4) so the definition is satisfied.

(5)MVD’s correspond to multi-valued attributes in an ER diagram -
e.g. consider the the following diagram:  
 
PROJECT 
 

�43

�  
 

what dependencies does this translate into?  
 

ASK  
 

A → B 
A ->> C

C. Note that, whereas we think of a functional dependency as prohibiting the
addition of certain tuples to a relation, a multivalued dependency has the
effect of REQUIRING that we add certain tuples when we add some other.

1. Example: If we add a new copy of QA76.9.D3 S5637, we need to add
three tuples - one for each of the authors.

2. It is this kind of forced replication of data that 4NF will address.

3. Before we can introduce it, we must note a few additional points.

D.Multivalued dependencies are a lot like functional dependencies, however,
their closure rules are a bit different

1. A functional dependency can be viewed as a special case of a
multivalued dependency, in which the set of "B" values associated with a
given "A" value contains a single value. In particular, the following
holds: 
 

if A → B, then A ->> B

a) To show this, note that if we have two tuples t1 and t2 such that t1[A]
= t2[A], and A → B, then t1[B] must = t2[B]. But we have already
seen that the t3 and t4 tuples required by the definition for A ->> B are
simply t1 and t2 in the case that t1[B] = t2[B]; so any relation
satisfying A → B must also satisfy A ->> B.

A B C

�44

b) Of course, a functional dependency is a much stronger statement than
a multi-valued dependency, so we don’t want to simply replace FD’s
with MVD’s in our set of dependencies.

2. We consider an FD to be trivial if its right-hand side is a subset of its left
hand side. We consider an MVD to be trivial if either of the following is
true:

a) Its right-hand side is a subset of its left-hand side  
 

i.e. For any MVD on a relation R of the form 𝛂 ->> 𝛃,  
 

if 𝛂 ⊇ 𝛃 the dependency is trivial  
 

or

b) The union of its left hand and right hand sides is the whole scheme  
 

i.e. For any MVD on a relation R of the form 𝛂 ->> 𝛃,  
 

if 𝛂 ∪ 𝛃 = R, the dependency is trivial.  
 

This is because, for any scheme R, if 𝛂 is a subset of R then 𝛂 ->> R - 𝛂
always holds. To see this, consider the definition of an MVD:  
 

Assume we have two tuples on R t1 and t2 s.t. t1[a] = t2[a]  
The MVD definition requires that R must necessarily contain tuples t3
and t4 s.t.  
 

t1[a] = t2[a] = t3[a] = t4[a]  
t3[R - a] = t1[R - a]  
t4[R - a] = t2[R - a]  
t3[R - (R - a)] = t2[R - (R - a)]  
t4[R - (R - a)] = t1[R - (R - a)]  
 

But since R - (R - 𝛂) is just 𝛂, t3 is simply t1 and t4 is t2.

3. Just as we developed the notion of the closure of a set of FD’s, so we can
consider the notion of the closure of a set of FD’s and MVD’s. Given a

�45

set of FD’s and MVD’s D, we can find their closure D+ by using
appropriate rules of inference. These are discussed in Appendix B of the
text.  
 

PROJECT: Rules of inference for FD’s and MVD’s

a) Note that this set includes both the FD rules of inference we
considered earlier, and new MVD rules of inference

b) Note, in particular, that though there is a union rule for MVD’s just
like there is a union rule for FD’s, there is no MVD rule analogous to
the decomposition rule for FD’s.  
 

e.g. given A → BC, we can infer A → B and A → C. 
 

However, given A ->> BC, we cannot necessarily infer A ->> B or A -
>> C unless certain other conditions hold.

E. Just as the notion of functional dependencies led to the definition of various
normal forms, so the notion of multivalued dependency leads to a normal
form known as fourth normal form (4NF). 4NF addresses a redundancy
problem that otherwise arises if we have two independent multivalued
dependencies in the same relation - e.g. (in our example) the problem of
having to add three tuples to add a new copy of a book with three authors.  
 
A normalized relation R is in 4NF iff for any MVD A ->> B in R it is either
the case that the MVD is trivial or else A functionally determines all the
attributes of R (in which case the MVD is actually an FD)

1. Example: (call_number, copy_number, author) is not 4NF, since
call_number ->> author is a nontrivial MVD that is not an FD

2. Note that every 4NF relation is also BCNF. BCNF requires that, for each
nontrivial functional dependency A → B that must hold on R, A is a
superkey for R.  
 

But if A → B, then A ->> B. Further, if R is in 4NF, then for every
nontrivial multivalued dependency of the form A ->> B, A must be a
superkey. This is precisely what BCNF requires.

�46

3. An algorithm is given in the book for converting a non 4NF scheme to 4NF  
 

PROJECT - 5th ed slide 
 

It basically operates by isolating MVDs in their own relation, so that they
become trivial.  
 

Example: application of this algorithm to our library database (with multiple
authors).

a) Our canonical cover for F+, with added MVDs for author  
 

borrower_id → last_name, first_name  
call_number → title 
call_number ->> author  
call_number, copy_number → barcode,borrower_id, date_due  
barcode → call_number, copy_number,borrower_id, date_due  
 

Notes:

(1)We do not include call_number ->> copy_number

(a)It is not the case that if we have two different copies of some
call_number, each copy_number value appears with each
barcode - just with the one for that book.

(b)Likewise, it is not the case that if we have two different copies
of some call_number, each copy_number value appears with
each borrower/date_due - just to the one (if any) that pertains to
that particular copy.

(2)The definition of 4NF - and the 4NF decomposition algorithm - are both
couched solely in terms of MVD’s. However, since every FD is also an
MVD, we will use the above set, remembering that when we have say  
 

borrower_id → last_name, first_name  
 

we necessarily also have  
 

borrower_id ->> last_name, first_name

�47

(3)The algorithm calls for using D+ - the transitive closure of D, the
set of FD’s and MVD’s. As it turns out, all we really need to know
for this problem is Fc (the canonical cover for the FD’s) plus the
MVD’s. (The transitive closure of the set of MVD’s is huge!)

b) Initial scheme:  
 

{ (borrower_id, last_name, first_name, call_number,  
 copy_number, barcode, title, author date_due)  
}

c) Not in 4NF - LHS of first dependency is not a superkey - change to  
 

{ (borrower_id, last_name, first_name),  
 (borrower_id, call_number, copy_number, barcode,  
 title, author, date_due)  
}

d) Second schema not in 4NF - LHS of second dependency is not a
superkey - change to  
 

{ (borrower_id, last_name, first_name),  
 (call_number, title),  
 (borrower_id, call_number, copy_number, barcode,  
 author, date_due)  
}

e) Third schema not in 4NF - LHS of third dependency is not a superkey -
change to  
 
{ (borrower_id, last_name, first_name),  
 (call_number, title),  
 (call_number, author)  
 (borrower_id, call_number, copy_number, barcode, date_due)  
}

f) Result is now in 4NF - we’re done

�48

V. Higher Normal Forms

A.For most applications, the normalizations we have considered are thoroughly
adequate. In particular:

1. Wherever possible, we normalize to 4NF. The exception to this is if
doing so would fail to preserve the ability to test certain dependencies
without doing a join.

2. If we can't have 4NF for this reason, we may accept BCNF.

3. However, since a BCNF decomposition may also fail to be dependency-
preserving, in some cases we may even have to accept just 3NF.

4. We need never compromise below 3NF, since a lossless-join dependency-
preserving decomposition into 3NF is always possible.

5. Sometimes, we may also accept a lower normal form for efficiency
reasons - because joins are computationally expensive (the Achilles heel
of the relational model.)

B. Two normal forms have been proposed as generalizations of the ones we
have studied thus far. However, we will not discuss them further here. (If
you are interested, see Appendix B of the text - available online).

�49

VI.Some Final Thoughts About Database Design

A.At the risk of over-simplifying, the normalization rules we have considered
can be reduced down to the following simple ditty:  
 
In a good design, every attribute depends on the key, the whole key, and
nothing but the key.

B. There are two general approaches to overall database design:

1. Start with a universal relation - a relation containing all the attributes we
will ever need - and then normalize it.

a) This has been the approach we followed in the running example in this
series of lectures, where we started with a single universal relation and
finished up with a 4NF decomposition.

b) This is often the way a naive user designs a database.- though the
naive user may not get around to normalization!

2. Start with an ER diagram. If we do this, we may still need to do some
normalization. This can lead to modifying our ER diagram, or we can simply
do the normalization as part of creating the relational scheme.  
 
Example: Our running library example could be represented by the following
initial ER diagram:  

�50

�  
PROJECT 
 
We could then think of our normalization process as requiring us to decompose
book into three entities and two relationships:  

�  
PROJECT 
 
However, a simplistic conversion into tables would, in this case, lead to more
tables than we need, since the Author and Title tables contain no information
other than their keys.  
 
(If they did contain additional information, then making them separate entities
would make sense. We can imagine having more information about authors,
thus warranting a separate Author entity; it would be hard to imagine what
would warrant a separate Title entity)  

�51

barcode

barcode

 
Thus, we may be better to take the set of tables arising from converting the
original ER diagram to tables and then normalizing the tables, leading to the
following set of tables:  
 
Borrower(borrower_id, last_name, first_name)  
Book(call_number, copy_number, barcode)  
Book_title(call_number, title)  
Book_author(call_number, author)  
Checked_out(borrower_id, call_number, copy_number, date_due)  
 

PROJECT 
 

(Note that, in general, a one-to-one or one-to-many relationship in an ER
diagram can often be converted to a relational design in which the key of the
“one” is folded into the table representing the “many” entity, thus avoiding the
need for a separate table.)

3. Note that these two approaches lead, after normalization, to similar but
not identical designs.

a) How does the design that comes from normalizing our original ER
diagram differ from the design we came to by normalization of a
universal relation?  
 

ASK  
 

The former has a separate Checked_out table, rather than keeping
borower_id and date_due in the Book table.

b) Which is better?  
 

ASK  
 

The latter design avoids the necessity of storing null for the borrower
id of a book that is not checked out, at the expense of having an
additional table. Thus,

�52

(1)To record the return of a book under the first model, we set the
borrower_id attribute of the Book tuple to null.

(2)To record the return of a book under the second model, we delete
the Checked_out tuple

C. Although we have stressed the importance of normalization to avoid
redundancies and anomalies, sometimes in practice partially-denormalized
databases are used for performance reasons, since joins are costly.

1. The problem here is to ensure that all redundant data is updated
consistently, and to deal with potential insertion and deletion anomalies,
perhaps by use of nulls.

2. Note that views can be used to give the illusion of a denormalized design
to users, but do not address the performance issue, since the DBMS must
still do the join when a user accesses the view

3. A sophisticated DBMS may support materialized views in which the view
is actually stored in the database, and updated in synch with the tables on
which it is based. (In db2, these are called summary tables.)  

�53

